
Finding Vulns in Embedded Systems
Carlos Pacho

$whoami

• Carlos Pacho
• Been with Cisco Talos for the past 5

years
• Security researcher for the ARES

(Advanced Research Embedded
System) team

• We built an ICS kegerator
• Embedded system reverse engineering

focused

Why Find Vulnerabilities

• Protect our customers
• Make the internet a safer place
• Detection content
• Notify affected vendor of newly discovered vulnerability

• Vendor (hopefully) patches the vulnerability

Vulnerability Discovery Overview

Acquire
Firmware

Extract
Firmware

Reverse
Engineer
Binaries

Identify
Vulns

Types of Vulnerability Assessments

Blackbox

Going in blind

No
documentation

Fuzzing

Graybox

A mix of
whitebox and

blackbox

Some data
available

Compiled
binaries

No source code

Whitebox

Everything
(source code,

dev notes, etc)

Firmware

Firmware Overview

• Firmware typically contains a device’s file system, which has:
• Binaries
• User account info (/etc/passwd, /etc/shadow …)
• Notes/test scripts from the developers
• Device startup information

• Acquire firmware from
• Vendor websites
• Off of the hardware
• Hopefully not encrypted

Extracting Firmware

Grab the
firmware

image

• Download from vendor
• Pull off hardware

Identify data
in the

firmware

• Binwalk
• Radare2 (r2) / hexdump
• Strings

Carve out the
relevant data

• Binwalk –eM
• dd

Extracting Firmware

Reverse Engineering Binaries

Assembly vs Source Code

Source Code x86 Assembly (compiled binary)

Reverse Engineering the Binaries

• Why?
• Find out what a compiled binary is doing

• Identify important binaries
• Network communication
• Run at startup
• Custom bins

• Tools
• Radare2, IDA, qemu, gdb

Static vs Dynamic Analysis

• The main difference is code execution
• Static: No code execution
• Dynamic: Execute the code and see what happens

• Useful tools for dynamic analysis
• GDB, QEMU, VirtualBox, sfuzz

Finding Vulns

Vuln Example: Command Injections

• These bugs occur when a programmer makes a unsafe call to system
• They allow for commands to be passed to system by using shell

metacharacters
• ` & | $() etc

• I’ve seen them in
• Web servers (ping pages, user management, network config)
• Configuration tools

• Find them by
• Finding all calls to system
• Back trace what is being passed to system
• See if you can control what is being passed to system

Vulnerable Program

Vulnerable Program

Vulnerable Program

Vulnerable Program

system(“md5sum $(whoami)”)

Input filtering

System is called

Taking user input

Finding a Command Injection with Radare2

Impact of Command Injection Vulns

• Malicious commands can be executed
• They can be prevented by properly filtering input to system

• Make sure no shell metacharacters make it to system
• Never trust user input

Recap

Acquire Firmware

Extract Firmware

Reverse Binaries

Find Vulns

